IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Non-local potentials with LS terms in algebraic scattering theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 7243
(http://iopscience.iop.org/0305-4470/30/20/023)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.110
The article was downloaded on 02/06/2010 at 06:03

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger30 (1997) 7243-7257. Printed in the UK PIl: S0305-4470(97)78297-0

Non-local potentials with LS terms in algebraic scattering
theory

Péter Lévay
Department of Theoretical Physics, Institute of Physics, Technical University of Budapest,
H-1521 Budapest, Hungary

Received 1 October 1996, in final form 1 April 1997

Abstract. The group theoretical analysis of Coulomb scattering based o8 ¢h@&, 1) group

is revisited. Using matrix-valued differential operators, modifying the angular momentum and
the Runge—Lenz vector used hitherto for the realization of s#8, 1) (Lorentz) algebra,

we obtain a three-dimensional solvable two-channel scattering problem. The interaction
term besides the Coulomb potential contains a non-local potentidlSefype. Using the
momentum representation tlfematrix can be calculated analytically. By employing a canonical
transformation, another solvable three-dimensional scattering problem is found, in agreement
with the expectations of algebraic scattering theory. The potential in this case soflP

Teller type with anLS term. It is also pointed out that our matrix-valued realization of the
so(3,1) algebra can be cast to an instructive form with the helpioR) gauge fields. An
interesting connection between gauge transformations and supersymmetry transformations of
supersymmetric quantum mechanics is also observed. These results enable us to construct other
solvable scattering problems by using(2) gauge transformations.

1. Introduction

Since the seminal work of Pauli [1], Fock [2] and Bargmann [3] providing a group theoretical
description of the Coulomb problem based on the dynamical symmetry groug), group
theoretical methods has widely been applied to bound-state problems. However, until the
advent of algebraic scattering theory (AST) [4], systematic group theoretical investigations
of scattering problems had still been missing. It was only after AST has made its debut
in physics that many interesting applications of group theory to the solution of scattering
problems appeared.

In AST the quadratic Casimir of mon-compactgroup G is related to the Hamiltonian
H of some scattering problem. Since, unlike in twempactcase,G has unitary irreducible
representations characterized by a continuous set of values, it is possible to relate the
continuous set of eigenvalues &f (the scattering energy) to such values. By identifying
the symmetry group of the interaction free (asymptotic) region, and using the theory of
group contractions and expansions AST was capable of determining the most general form
of the S-matrix for the fixed dynamicahon-compactsymmetry groupG.

In AST the calculation of theS-matrix is performed with no recourse to any special
coordinate realization of the generators of the Lie algafpraf G. Hence, no explicit
form of the scattering Hamiltonian is usually written down. However, some authors [5-7]
stressed the physical relevance of finding interesting coordinate realizatigngafrder to
extract the interaction terms (potentials) governing the scattering process. In this approach
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7244 P Lévay

the general form of the algebrafcmatrix for the dynamical symmetry group can further
be specialized by an explicit calculation of the unknown functions not fixed by AST.
For the Coulomb problem—our main concern here—the non-compact group in question
is SO(3,1) (the proper orthochronous Lorentz group) [8]. The grd@(3,1) (SO (4))
describes the continuous (discrefe)> 0 (E < 0) part of the spectrum. The continuously
changing valuef of direct group theoretical meaning turns out to pe= n = Z;Z,¢%/k,
where X2 = k> (h = m = 1) andn is the Sommerfeld parameter. The scattering
HamiltonianH is some appropriately chosen function of the quadratic Casinsiaf3, 1).
Choosing the six generators 8b(3,1) (the Lie algebra ofSO(3, 1)) to be the three
components of the angular momentuimand the three components of a vector operdor
related to the components of the Runge—Lenz vector, the quadratic Casihir 52— K2.
Then its relation to the Coulomb Hamiltonian is [9]

2
H=— E. 11

C+1 (1)

Identifying the asymptotic algebra as the Lie algebra of the Euclidean gi@p, the

purely algebraic method yields tifematrix [8, 9]

_TU+1+in)
ST +1—ip)

where! is the value of the angular momentum.

In this paper by employing a new coordinate realization we will modify the generators
L and K commuting with the Hamiltonian of the Coulomb problem. The idea is to add
matrix-valued terms to them. We demand that the resulting new genetatarsd M
should satisfy the commutation relations of th&3, 1) algebra. In order to achieve this
we employ a canonical transformation yieldifigst-order differential operators for botlL
and K. (Notice thatK is originally asecond-ordemdifferential operator since it is related
to the Runge-Lenz vector.) In this canonically transformed realization we can quickly find
the appropriate modifications. After the inverse canonical transformation we obtein-a
local realization for theso(3, 1) algebra. Of course, these new generatbrand M are
commuting with a Hamiltonian with anodified Coulomipotential. This realization will
be introduced in section 2. With this new realization at hand we calculate the Casimir
operatorC in section 3. First, we choose the representation content of the matrix-valued
modification to be that of a particle with sp%‘r The trick is again to use the canonically
transformed realization which is much easier to handle. We also emphasize here the role
played by the other Casimir operat8r = J M which is non-zero. (The role of Casimir
operators in AST other than the quadratic Casimir has been clarified in [10] and [11].) In
the canonically transformed realization the interaction term can easily be identified and the
resultingS-matrix can be calculated. The potential in this case isaschl-Teller type with
anLS term.

In section 4 we transform back the Casimir operators to rthe-local realization.
Using the Casimir operatd@? = JM we can extract a non-local interaction term Iof-
type. Since the interaction term also commutes with the operator of paritys-thatrix of
the resulting two-channel scattering problem is diagonal in the basis diagonalizidgsthe
term. In section 5, by using the momentum representation, we calculaserttarix for the
resulting scattering problem. The geometric meaning of our matrix-valued realization will
be clarified in section 6. Here we point out that this realization fostl{8, 1) algebra can be
cast in an instructive form with the help of (2) gauge fields. Armed with this observation,
we can derive other solvable three-dimensional scattering problems by gauge transforming

S (1.2)
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the original scattering problems with conveniently chose(?2) gauge transformations. The
conclusions and some comments are left for section 7.

2. A matrix-valued realization for so(3,1)

Let us start with the usual realization of the(3, 1) (Lorentz) algebra in terms of the
angular momentund, and the Runge-Lenz vectdt’,

7172

1
L=RxP K'= (PxL-LxP)+ R. (2.1)

These vector operators commute with the Coulomb Hamiltonian

1 Z1Z2€2
H=7P2—|— 14.2€
2 R

(in the following we seti = m = 1). For scattering states the total enedyis positive.
Since H commutes with our generators we can assume that they act merely on energy
eigensubspaces. In this case we can renormalize our opekitdry setting

1 !
K:JEK. (2.3)

The commutation relations df and K are now in the form of aro(3, 1) algebra:
[Li, L;] =liejjuLy [Li, K;] =leiju Kk [Ki, K;] = —igijx Ly (2.4)

wherei, j, k=1,2, 3.
Note that by virtue of the reIatior%(P x L — L x P) = RP?— P(RP) on an
eigensubspace of enerdy the operatoiK takes the following form [6]:
1 1 2E
K= _—(-RP*- P(RP)) +, R 2.5
V2E <2 2 25
We see from (2.5) thakC (unlike L) is a second-order differential operator. Moreover, the
presence of the factorg2F is also disturbing. Hence, in order to easily find some matrix-
valued modification ofL and K we employ a canonical transformation of the following
form [6]:

2.2)

1
R~ —P P~ —V2ER. 2.6
E (2.6)
Hence the canonically transformed realization fo¢3, 1) is spanned by the operators
L=RxP K = ;P(1+ R% — R(PR). (2.7

This is a realization in terms dirst-order differential operators.

Now we try to find matrix-valued first-order differential operatofsand M by adding
matrix-valued terms, not containing the differential operafyrto L and K. Among the
many possible realizations we restrict our attention to those for whieh L + S, whereS
are(2s+1) x (2s+1) spin matrices in the representation of the Lie-algeb(@®) labelled by
s. This choice is also dictated by simplicity, and our desire to arrive at a group theoretical
description of potentials witlh. S terms. We would like to satisfy the commutation relations

i, Jj] = leijidi [Ji, M;] = ie;ju My [(Mi, M;] = —igiuJi.  (2.8)

The first relation of (2.8) is trivially satisfied. Moreover, one can easily convince oneself
that the combination\I = K + F(R)S x R satisfies the second. Hence we are left with
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the determination of the functioA(R). This function can be determined from the third set
of commutation relations. A straightforward calculation shows that

[M;, M;] =i <<;R(R2 - 1F — F) Sk — Lk)

+ <F2 —F— iR(RZ — 1)) (SR)Ry. (2.9)

We can see from this equation that the third relation of (2.8) is satisfied pro¥idedisfies
the differential equations

1 F’
F—ER(RZ—l)F/zl and F2—F—ﬁ(R2—1):O. (2.10)

It is easy to show that the solutions to these equationsF&R) = 1 and F(R) = 1/R?;
hence our matrix-valued realization is

1
J=L+S8 M=K+F®RSxR F(R) = { U2 (2.11)

After transforming back with the help of the inverse of the canonical transformation (2.6)
we obtain

1/v2E
V2E /P2

It is important to stress that in this case the eigenvadueorresponds to a (yet unknown)
Hamiltonian commuting withJ and M. Moreover, realization (2.12) foFg(P) =
V2E / P? is non-local due to the presence of the operdtof. SinceP~2 = —A, with the

help of the Green function of the Laplace operator its action on a function can be written
as

J=L+8 M =K + Fp(P)P x S FE(P)=[ (2.12)

2 1 3, VER)
(P%Y)(R) = s f d*R R_RI (2.13)
Since we are primarily interested in the possibility of obtaining non-local potentials, the
discussion of the other solutiofi; (P) = 1/+/2E will be deferred to section 6.

In closing this section we remark that constructing such matrix-valued realizations is
motivated by the theory of induced representations. This theory tells us how to construct
unitary (but generally reducible) representationsGoktarting from an unitary irreducible
representation of some subgrotfp In our case this subgroup 60 (3, 1) is the maximally
compact subgroug O (3) corresponding to our spin degrees of freedom. In this context the
interested reader is asked to consult [12] where the theory of induced representations has
been used to construct the explicit form of modified symmetry generators for both compact
and non-compact symmetry groups.

3. The scattering problem in the canonically transformed realization

In this section by calculating the Casimir operat6rs- J?> — M? andC' = JM = M J

using the canonically transformed realization (2.7) and (2.11) we derive the scattering
potential compatible with th& O (3, 1) symmetry. Note in this respect that we hawo
Casimir operators corresponding to the fact thiéx(3, 1) is a group ofrank two. Had we

used the usual realization in terms bfand K of (2.7) we would have obtained zero for
the CasimirC’. However, in this new realizatiod’ # 0; hence we have no reason for
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neglecting the possible relevance of this operator. Indeed, for the complete characterization
of the scattering states, the eigenvaluebath Casimirs are needed [10].
Using the realization (2.7) and (2.11) straightforward calculation shows that

1 R>—-1 3
— 2_M2=_*P1_R22 RZ _ .
c=J 4[ ( e+ (M + R%) SR2 2 (3.13)
2i 1
C'=JM = <R'2MSR + SP) SA—RY (3.1b)
where
M=2LS + 1 3.2
In this paper we only consider the simplest non-trivial case when the séini.ie.
S = %0'. (3.3)
In this caseM = o L + 1, and it satisfies
{(M,ocR} =0 {M,ocP}=0. 3.4)
With the choice (3.3) using the identityra)(ob) = ab + i(a x b)o one can prove that
, 0 M+1 2
wheren = R/R. After calculatingC and the square af’ we find
C+ @) +32=0. (3.6)
Hence, —C — % is the square of @. Now, following [10] we show that (3.6) fixes

the representation content of the scattering states. The irreducible representations of
SO(3, 1) capable of characterizing scattering states are classified by th&jpair), where

jo = 0, % 1, g ..., and j; = ik, k € R} [13]. According to AST, scattering states are
labelled ag jo, j1). The action of the Casimir operators on this base is [13]

Cljo. j1) = (g + Jji = DlJjo. ju) (3.7a)

C'ljo, j1) = —ijojaljo, j1)- (3.7)
Using equations (3.7) together with the identity (3.6) we find the relation

(o — Ui -3 =0 (3.8)

so we can single out the statefc%(, ik) transforming according to the (inequivalent)
representations mirror-conjugated to each other. The next step is to extract the interaction
term (potential) from the eigenvalue problem of the Casimir operators, i.e. to use
equations (Fa, b). Due to the relation (3.6) we can choose memate of such operators.

Let us choose the Casintf which is a first-order differential operator. Its square will result

in a Schobdinger equation with some scattering potential. The forr@’ddfter a coordinate
transformation [6]

R(r) = coth(r/2) (3.9)

i(an) [—2 sinlr?(r/z)3 + (3.10)
4 or

M+1 ] 1
coth(r/2) | sintf(r/2)
Then we apply a similarity transformation

C— T7YrC'Tw) T(r) = r sintf(r/2) tanh(r/2) (3.11)
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to obtain

on) [_3_1+ M } (3.12)

or r sinhr

According to (3.6) four times the square of this operator gives (up to a constant) the quadratic
Casimir related to the scattering Hamiltonian:

2 29 M
2V =- - - h — M). 1
(2CH 52 7o sinhzr(cos M) (3.13)

Knowing that the scattering states labelled :’&% (ik) are not discriminated by the operator
C and using (37b) we can see that the Sdiuinger equation is
( & 2d n L? M
dr2  rdr  sintr 2cost(r/2)
where, in order to specify this equation further, we have to solve the eigenvalue problem
of the operatorM acting merely on the angular part of the functiur%’ik,,,k(r,e, @) =

R%’ikyl’,\(r)@;,)\,m(é, ¢). SinceH = —C — % commutes withJ = L+ .S, this suggests using
the states (spinor harmonics)

> qj%,ik,k = kz\p;.ik,,\ (3.14)

1 m—1 mtl
_ : 2 T 2
Vitjm= NeT ( J +ij,% X+ +J mYF% X—) (3.1%)
1 ; m—3 ; m+3
yj+§,j,m:T+2<_ ]—m+11/j+%2)(++ ]+m+1Yj+%2X,) (3.1%0)

which are eigenstates di?, J? and J; expressed in terms of eigenstatesIdf, Lz, and
S3. The action ofM on the spinor harmonics is

My],j,m (9, gﬂ) = )"yl,j,m(es (P) (316)
with
I+1 forj=1+1
A=+ 1) = . 2 (3.17)
—1 forj=1-3
and for/ = 0 the only possible value is = 1. Hence, with the definition
q)l,A,m(es (/)) = yl,j,m (97 Qo) (318)
we obtain the radial Schdinger equation
> 2d I(I+1 A 2
- =~ — Rip, =kRi,. 3.19
( dr2  rdr sintr ZCosﬁ(r/Z)) 2ik2 2k (3.19)
Hence the potential is
l+1) ( 1 1 > A
=7 |5 - — . 3.20
2 r2  sinkr 4cosh(r/2) (3.20)

Notice that the first term replaces the usual centrifugal term ith- 1)/2 sint? r, and the
second term is a spin—orbit term. The radial equation (3.19) can easily be solved by noting
that, by virtue of the relatiod.? = M(M — 1), it can be written in the form
( o? AL —1) AL+ 1)
dr2 * 4sintt(r/2) 4cosk(r/2)

) PR (r) = KRy, () (3.21)
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which is of the form of a solvable problem known from [7,10, 11]. The calculation of the
S-matrix elements can be performed by noting thdt JJ] = [H, J3] = 0, and parity is
also conserved. Hence tisematrix is of the form [14]
. e,Zi:SJr 0

S = < 0 em_) (3.22)
wheres.. are the eigenphases, describing the scattering of a spin-0 by é ppirticle when
the process is characterized by the total angular momerjtest + % Using the results of
[10], employing the asymptotic properties of the solution of (3.21), the diagonal elements
of the S-matrix turn out to be

S(l)(k) — gihk) —

A g T+ 3 =T (G +ik)
AT T+ 3 +i0T G —ik)
where we have reverted to the usual notation uging the S-matrix as defined by (3.17).
Note, thats.. corresponds to the case with= +(j + %), respectively.

It is important to realize that the eigenphase shifts are not independent. This can be
traced back to the fact that the transformation> —\ amounts to calculating the phase
shifts of potentials that are supersymmetry partners of each other [10]. For such partner
potentials the reflection amplitude is the same. SinceStheatrix is related to the reflection
amplitude by a multiplication factof® which equals to-€* if A > 0 and to &* if » < 0,
we can see that th&-matrix elements are the same up to a sign. To see this explicitly we
have to use the reflection formula for the gamma functit@)l'(1 — z) = =/sinnz
with z = A + I +ik. Since simz = sinm(x + })coshwk + icos(x + 3)sinhrk
and A + % is half-integer, the imaginary part is zero. Hence, for this special choice
Fz)'A—z) =TI Q- z) yielding the identity

T(A+3—ik) T(=r+31—ik)
Fh+21+ik)  T(=r+3+ik
so the reflection amplitudes are the same for both of the cases(; + %).

Having shown that in the canonically transformed realization we can obtain solvable

three-dimensional scattering problems will$ terms, in the next section we transform

back to the non-local realization of (2.12) (involving the opera®or) in order to obtain
non-local modified Coulomb potentials.

(3.23)

(3.24)

4. Non-local potentials with LS terms

The easiest way to obtain scattering potentials using the non-local realization of (2.12) is
to use the inverse of the canonical transformation (Rhediately in the (3.1b) expression
for the Casimir operatotC’. The inverse canonical transformation in this case yields

1 /2 P?
'= ——( SMSP-SR|(—+ —E). 4.1
¢ V2E (PZM )(2 ) @4
Since the terrr%P2 — E is just minus the interaction termV, all we have to do is to
evaluate (4.1) on the scattering staies % i f) yielding by virtue of (37b) the constant
i%f for the left-hand side, and then inverting the operator standing bé&forBlote, that

the states’,%, if)yand|— % i /) belong to representations mirror-conjugated to each other.
Such representations are discriminated®ywhich is a pseudoscalar operator; hence it is
odd with respect to parity [15]. By realizing that

2iM = R[on, o P] (4.2)
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which is an identity which can be proved by calculating the commutat®#, [S P] and
[SP, R] with § = 20 and using the definition (3.2), one can convince oneself that

2
C = FR(JP)(O%)(UP)— < Z) . (4.3)
Acting with C’ on the scattering statést 1 5. 1f) one can get the equation
+rl+iif) = J;TR(UP)(Un)(UP)PZV| +1if) (4.4)

where, according to section 1, the(3, 1) labels f andk are related in a non-trivial way
through the relationf = n = Z1Z.¢?/k where & = k. The inverse of the operator
standing beforeV can readily be constructed thanks to the relatioas)? = I and
(e P)2 = P2. The result for the interaction tervi can be cast into the form

V = Z1Z2¢*(c P)(on)(c P)P 2R~ (1) (4.5)

where the symbo(+) = %fc/ with the property(+£)2 = I indicates whether we should
evaluateV on a state or on its mirror-conjugated counterpart. Hence we can régard
as a parity odd operator commuting with. Having this in mind, we can see from
(4.5) thatV is a parity evenoperator. In order to further specializé we write it as

V = (P?R)"Y(¢P)(on)(c P)a, which can be verified by direct calculation. Here (the
operator)a = (£)Z1Z»¢?>. Now we expres§on)(oP) from (4.2) in terms ofM. After
some algebra we obtain

9
V =R Yon)a —2R1P2R? <8R + M) M(on)a. (4.6)
In order to further specializ&, as a next step we derive the radial Satinger equation.

First, we define
Vairistim B =Rz j (RYjgs jm (M) (4.7)
where R = Rn. The mirror-conjugated wavefunction transforming with respect to the
representatior{—3, ik) can be obtained from this by changing< ) to (j + 3) on the
left-hand side of equation (4.7).
Moreover, we recall that

1 2 4r O (RY)
m = 1220: 2q11 Z (R ! lm (1) Yy (). (4.8)
Using (4.8), (2.13) and the orthogonality of the functldﬁ,s(n) we obtain
-2 _ 1 ’ 2 (R ) /
(P lI/:F)(R) = m)}ﬁ%,j,m(n)/ dr (R) m :F(R) (4-9)

where we have supressed the extra label& Gind k.

Now we would like to calculate the matrix elements of the (4.6) interaction térm
the basis spanned by the spinor harmo@?;;;:l - m(m). SinceV contains the ternon, we
will need its action on the spinor harmonloﬁ?*jF gm(M). As a first step we refer to the
result [16]

onYiz1 jw(M) = =Vis1 (0. (4.10)

Using the fact that+) = (2/f)C’ was introduced as a parity odd operator with exactly
the same properties asn and repeating the steps in [16] for this operator, we obtain
equation (4.10) for£) too. (The trick is to calculatédZ J in a coordinate system witi;
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along thez-axis, then6 = 0 andy].;%,qu does not depend on any of the angleand ¢.

The operatorMzJ; on this acts as the operat¥; Z,e?/+/2E)S3 proving our claim.) By

virtue of these results and (3.16) one can see that in this base only the diagonal elements
are different from zero. This should not come as a surprise bedauseven with respect

to parity. According to [14] the interaction term and thenatrix is diagonal in such cases,
implying that under the scattering process a no-flip from the channel ith; + % to

the channel with = j = % occurs. These diagonal elementsiofcan be calculated from

the integral/ dn y;fi%yj!m(n)(vwi)(Rn). After straightforward calculation we obtain the

following matrix,

((a/R) + G+ W =G+ 52w 0 )

4.11
0 (@/R)—(j+ Wy —(j + 3)°Wy (@41

acting on the vecto(R., R_)". The kernel of the non-local operatorg and W, is

() N —
R Ry=_2 <) % 412
Wi (R R) = 5 (RO R dRY (4.12)
20 (RO 1
w (R Ry = = (R<) (4.12)

2l +1(R)HIR
where the values of are j + 1, for Wl(i) and Wz(i), respectively.
Hence, we have shown that a three-dimensional coupled-channel scattering problem
can indeed be obtained by using a matrix-valued realization forsth{8, 1) algebra.
Moreover, from (4.11) one can see that we have managed to obtain non-local terms
modifying the Coulomb potential. From the matrix form of the interaction term (it has
only diagonal elements) it is clear that it describes a scattering problem where parity is
conserved.

5. Calculation of the S-matrix

Having demonstrated that non-local interaction terms can appear in the Hamiltonian by using
matrix-valued realizations for the (3, 1) algebra, we now proceed to calculate freatrix
of the corresponding scattering problem. Scattering states are characterized as eigenstates
of the operators (3«, b) with P and R replaced accordingly by using the inverse of the
canonical transformation (2.6). Since this transformation leaves invariant relation (3.6),
these states are labelled p% % i f). Moreover, such irreducible representation spaces,
by assumption, are also eigenspaces of enéigyWe have already seen in the previous
section that in order to get modified Coulomb potentials the relation between theflabel
of the irreps andE has to be related ag = n = Z1Z,¢%/k where & = k2.

The calculation will be performed in momentum space where

O(P) = ! . / ePRy(R). (5.1)
(2r)>

The Casimir operato€, not discriminating between the states}, i f), is

R P2\71? P2\ P2_2E 3
CZ_[JE(E_Z)] +(M+2E)2P2_4. (5.2)
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After a scale transformation iy = e2/"2E)RP one can obtain from the eigenvalue problem
of the Casimir operator the equation
1-P%2 3> 4P*-5P24+1 3
ot o
4 QP2 2P P

P2—-1(1-p2
- L? P?)+1+ f2)®=0. .
+( 5p? ( 5 + M+6 >+ +f) 0 (5.3)

Introducing the new variable = (1 — P?)~2 equation (5.3) can be written in the form

82 (5 5 3 MM-1 MM+1) 2>
-1 — = - 1 d=0.
<y(y ) < )8y S ay—1 T/
(5.4)

After separating the angular part & in the usual way, we employ another similarity
transformation

2

_1_9

W= (1_yy> Ty (5.5)

transforming the radial part of (5.4) to the differential equation for the hypergeometric
functions
2

0
-1)—
(y(y )3y2+
whereD = A+ B+ 1 and
A=B"=j+1+ilf] C=1+3. (5.7)

Keeping track of all of our transformations made, we finally obtain the radial part of
the original equation involving of (5.2):

P\ p2/p2 \*? 1
Riige,;, (P) = <k) <_Pz/k2—1> 2F1 (A, B, C, —Pz/k2_1> . (5.8)

We have kept from the two linearly independent solutions of (5.7) in the neighbourhood of
the singular point 0 the one for wh|61a1 ir,, (@ =0 for/ # 0. Note that the dependence
of R on f manifests itself through the appearancedoénd B of (5.7) in the argument of
the hypergeometric function.

In order to obtain th&-matrix from the momentum space representation of the radial part
of the wavefunction, we have to compare it with the Fourier transform of the wavefunction
with modified Coulomb asymptotic behaviour. The latter is known to be [17]

p2\ Y L(=if) p2\ MY
: Coulomb _ i o—4if -+ J/ -
lim RFUTAP) 1> (1 k2> +é N (1 kz) : (5.9)

This has to be compared with the radial part of the (5.8) momentum space solution in
the limit P — k, which for | f| = f is given by (see [17] for the details of this limit)

(C — Dy)a% — AB) WIR(P(y) =0 (5.6)

o\ —1+if =1-if

where

§ -
L= OEITEAD (5.11)
FG+IFINCU-j+5F1f)
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Here we have used the following property of hypergeometric functions [18],

FA B Cioy= " OTBZA) o apA1—Cha 1B+ A1)
I'(B)['(C — A) (5.12)
F(C)F(A_B)(— )y BF(A,1-C+B,1-A+B;1/z2) |
rrc—p ’ s
valid for |arg(—z)| < w. Comparing (5.9) and (5.10) gives
S(A)(k) — e2i5;\(k) — _ieiﬂm e+ % + |f)F(% ~ If) (513)

AT TG+ 3 —INTG+if)
where f (k) = Z1Z,¢%/k. The choice f| = — f gives the same result [17].

6. The geometrical meaning of matrix-valued realizations

Having shown that the non-standard realization (2.11) yields interesting exactly solvable
scattering problems, in this section we will clarify its geometrical meaning. Moreover,
we recall that in section 2 we postponed the discussion of the solutioR) = 1, of
equation (2.10). Here we would also like to discuss the connection of this solution to that
with F(R) = 1/R? yielding the solvable potentials of the previous sections.

As a first step, we notice that by employing a similarity transformatba> T-1OT
to the operatord, and K of (2.7) with T(R) = (1 — R? 2, we obtain the operators

TLT=Rx P T'KT = 11+ R>)P — R(RP) (6.1)
i.e. we have moved the differential operatBr to the right. Next we introduce the six
vectorsf; andg;, j = 1, 2, 3, with components

fIR) =euR  gf(R) =31+ RS — R;Ri. (6.2)

Hence the transformed operators of (6.1) can be written in the forrﬁj"ﬂ and gj’?Pk,
respectively. Note, that the vectofs andg; j = 1,2, 3, generate the six infinitesimal
transformationd? — R+36R; = R+ f(R); (similarly for g;), corresponding to the action
of so(3, 1) on our coordinates.

Furthermore, we introduce the quantities

W/ (R) =S Wé(R)=F(R)Rx S (6.3)
where F(R) is chosen as in (2.11) an8;, = %oj. These are just the matrix-valued

modifications of (2.11) (not affected by the similarity transformatib(R)). Hence, by
virtue of (6.2) and (6.3), for the two possible sets of modified generators we have

TUT = ffP+ W/  T7'M;T =gip+ We. (6.4)
In order to clarify the meaning of the matrix-valued modificatid#s’ and W, we
try to find ansu(2)-valued vector fieldd,4(R) = Ak(R)O‘kalg satisfying the equations
FEoA + @ [ A = W] +i[ AL W] (6.59)
SIOLA; + (3ig) Ax = 0;WF +i[A;r, W] (6.5b)

(matrix indices are left implicit). Notice, that the left-hand sides of equations (6.5) are the
infinitesimal change in the vector field under the coordinate transformations generated by
the vectorsf; andg;. These quantities are just the Lie derivativdg and L, of A. The

fact that the right-hand sides of (6.5) amen-zeromeans that our vector fieldd are not
invariant under the infinitesimab (3, 1) transformations. Moreover, we recognize that the
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right-hand sides are just thevariant derivativesD; = 9, +i[A;,] of W/ and W, with
respect toA. HenceA is ansu(2) gauge potentigland D; W_/f andD; ng are infinitesimal
gauge transformations. Accordingly, equations (6.5) can be written in the compact form

LyAi=D;W/ — LgA =D;Wf (6.6)

expressing the fact that thd we are looking for is asymmetric (invariant) gauge field
[12,18,19], meaning that it is invariant under the infinitesima(3, 1) transformations
only up to an infinitesimabu (2) gauge transformation
Now we try to find a solution to equations.fa, b). It is easy to see that the ansatz
A = G(R)S x R solves (654). (Note that, due to the fact thatG(R) = G'(R)R:/R,
no term containingG’(R) occurs owing to the antisymmetry efy in fj". The sum of the
remaining three terms proportional ®(R) sums to zero according to the Jacobi identity
for the matricesS;.) This solution of (66a) means that we have found a class of rotationally
(SO (3)) invariantsu(2)-valued gauge fields parametrized by the arbitrary functqmr).
However, we are more ambitious in wanting to find a gauge field invariant under the larger
groupSO(3,1). This can be done by further specifying the funct@ar) with the help of
equation (6bb). Using the ansatzd = G(R)S x R this equation yields terms proportional
to €18, € RI(RS) and R;(S x R);. The coefficients of these terms have to vanish
independently, yielding the following set of three equations,
(R —1)G =F + RF' (1-—F)RG=F' ;(1-R*G' —RG=F' (6.7)
where according to (2.11) we have two possibilities fofR). From these equations we
see that we obtain the solutions
A= ﬁs x R for F(R) =1 (6.8)
2

L
R2(1— R?)

1
SxR for F(R) = — (6.8b)
R2
where the notatiomd” suggests that we might be able to relad& to A by an SU(2)
gauge transformatiorof the form
AY = U AU —iUTVU. (6.9)
To show that our expectation is really justified, note that
2

A=i——
1- R2

onVon (6.10)

wheren = R/R. Hence, with the choic&’ = €27°" = ion we can satisfy (6.9).
In order to gain further insight into the meaning of the non-Abelian gauge fi¢ldsd
AY we also introduce the field strengthy,

Fix = 0jAr — 0 Aj +1[ A}, Al] (6.11)

transforming covariantly (i.eFJ% = U'F;U) under anSU (2) gauge transformation. Note

also thatF;; — 0 for R — oo, sinceA; — iUT9;U for R — oo. One can easily show
[19, 20] that with the help of;; equation (6.6) can be written in the form

fFFq = D! gl Fi = D;®} (6.12)
where
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It is important to realize that the quantitimf and ®¢ transform covariantly under an

SU (2) gauge transformation, as can be seen from equation (6.12) by virtue of the covariant
transformation properties d@f;; andD;. With the help ofdJ.-,.f andd)f the modified generators

of (6.4) can be written in the instructive form

TYT = fH(P+ A + @] T7IM;T = g (P + Ay + %, (6.14)

Since P + A = —iD, we can see that our modified generators transform covariantly too.

Now we are in the position to clarify the relationship between the two solutions in
equation (2.11). For the two possible choidegr) = 1 and F(R) = 1/R? we have two
possible sets of modifiech(3, 1) generators. According to @, b) and (614) we can see
that

(T, =Ul(r=y,1U (T*M;T" =ul(T7*M;T)id ~ (6.15)

i.e. the two possible solutions are related to each other byitl® gauge transformation
U= el — _jgn.

An immediate consequence of this important result is that we can easily derive the
scattering potential corresponding to the solutiofR) = 1 by simply gauge transforming
the (3.14) Schiddinger equation of section 3 obtained for the realization baseH (@) =
1/R?. Indeed, the Casimir operators.18, b) are also gauge covariant; hence the new
scattering Hamiltonian can be obtained by gauge transforming aditi{Note thati/(n),
hence the derivatives with respect@Rr) of (3.10), in the kinetic term of (3.14) are not
transforming.) By virtue of (3.4}gnMon = —M andonL?cn = L? 4+ 2M; hence the
gauge transformed version of the (3.14) Sdlinger equation is

& 2d L? M
—— - t= + —
dr2  rdr  sinttr  2sintf(r/2)
yielding the scattering potential
I+ 1 < 1 1 ) A
Vil=——_"3 - + : 6.17
2 r2  sinkr 4sintt(r/2) (6.17)
This potential yields the same (3.21) form for the radial equation with the choiee—A.
Hence the roles of the eigenphases have to be changed rrfagrix. This can also be

seen by noting that by virtue of equation (4.10)= —ion is just the matrix #; on the
(3.15) states. It follows tha$/" = 015701; hence

u 01 92i8+ 0 01 e2‘5* 0
§© =<1 o)( 0 e2‘5><1 o>=< 0 e2i5+) (6.18)

where the eigenphasés are defined by equation (3.23).

Of course the example above served merely illustrative purposes. Bysugi®ggauge
transformations of a more general kind we can derive a large number of interaction terms.
The author is intending to elaborate this promising idea in a subsequent publication.

) Vi = kz‘y%,ik,k (6.16)

7. Conclusions

In this paper we have shown that by considering matrix-valued differential operators for the
realization of theso(3, 1) algebra one can obtain non-local potentials with terms. Such
realizations modify quite naturally the usual realization of tfa€3, 1) algebra in terms
of the angular momentum and the Runge-Lenz vector. We have obtained potentials of
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Poschl-Teller type and, after employing a canonical transformation, non-local potentials.
The corresponding-matrices are also calculated; for the non-local potential we used the
momentum representation. We have also stressed the important role played by Casimir
operatorother than the quadratic Casimir for the identification of the scattering states. The
fact that these operators are non-zero (unlike for the usual cases) enabled us to calculate
the interaction terms more quickly.

The geometrical meaning of our realization has also been clarified by showing that the
generators can be rewritten in covariant form. In this case the derivatives are replaced
by covariant derivatives by using:(2)-valued gauge fields. Hence, by employing2)-
valued gauge transformations one can obtain a whole class(8f1) realizations. This
observation has important implications. One can derive a large number of solvable potentials
by simply gauge transforming the Hamiltonian of the scattering problem. A simple example
of this procedure was given in section 6. One can show [10] that the potentials related
to each other by theu(2) gauge transformation of the for#f = g2 — _jgn
(see potentials (3.20) and (6.17)) are supersymmetry partners of each other. Hence, we
have also found an interesting relationship between gauge transformations and SUSY
transformations.

Finally, we comment on a possible generalization of this construction for the algebra
so(3,2) which is frequently used in realistic models of heavy-ion reactions [9, 21, 22].
Our construction of matrix-valued realizations was based osmud@®) ~ so(3) irreducible
representation. In this paper we used merely the simplest non—trivial%spﬁpresentation.

One can show that realization (2.11) is just the induced representatien(®rl) induced
by the above-mentioneglo(3) representation. This representation is expressed with the
help of the three coordinate®{, R», R3) which are stereographically projected coordinates
of the hyperboloid—X? — X3 — X2 + X3 = 1 which is the cose§0(3,1)/S0(3). This
coordinate transformation is of the form
2 1+ R?

“iopt KT iRe
In the same spirit one can try to use the (2.14)3, 1) realization to obtain aro(3, 2)
realization. In this case we have to express the st(8, 2) generators generating the
isometries of the hypersurfaceX? — X3 — X%+ X3 4+ X2 = 1 in terms of the coordinates
(R1, R2, R3, x):

(7.1)

2 1+ R? 1+ R?
X=—"R X4 = ———-CO0S X5 =
1— R? 4 X ST 1_R2

Then we can express the(3, 2) generators in terms of the usual generatbrand K, and

then try to use the modified generatofsand M instead. The construction is based, in this
case, on the cosétO (3, 2)/S0 (3, 1) which can be parametrized by the aforementioned four
coordinates. Notice that in this case the inducing finite-dimensional matrix representation of
so(3, 1) must be non-unitary. In this case the matrix part of the generators is non-Hermitian.
This could be the way to obtain non-Hermitian interaction terms, hence arriving at a group
theoretical description of optical potentials. Such ideas will be investigated in a forthcoming
publication.

siny. (7.2)
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